H
eemonna

Publishing Android Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

» How to prepare your application for deployment

» Exporting your application as an APK file and signing it with a new
certificate

» How to distribute your Android application

» Publishing your application on the Android Market

So far you have seen quite a lot of interesting things you can do with your Android device.
However, in order to get your application running on users’ devices, you need a way to deploy
it and distribute it. In this chapter, you will learn how to prepare your Android applications
for deployment and get them onto your customer’s devices. In addition, you will learn how

to publish your applications on the Android Market, where you can sell them and make

some money!

PREPARING FOR PUBLISHING

Google has made it relatively easy to publish your Android application so that it can be
quickly distributed to end users. The steps to publishing your Android application generally
involve the following:

1. Export your application as an APK (Android Package) file.

2. Generate your own self-signed certificate and digitally sign your application with it.
3. Deploy the signed application.
4.

Use the Android Market for hosting and selling your application.

464 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

In the following sections, you will learn how to prepare your application for signing, and then learn
about the various ways to deploy your applications.

This chapter uses the 1LBS project created in Chapter 9 to demonstrate how to deploy an Android
application.

Versioning Your Application

Beginning with version 1.0 of the Android SDK, the AndroidManifest.xml file of every Android
application includes the android:versionCode and android:versionName attributes:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.LBS"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="14" />

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<uses-library android:name="com.google.android.maps" />
<activity
android:label="@string/app_name"
android:name=".LBSActivity" >
<intent-filter >
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

The android:versionCode attribute represents the version number of your application. For
every revision you make to the application, you should increment this value by 1 so that you can
programmatically differentiate the newest version from the previous one. This value is never used
by the Android system, but it is useful for developers as a means to obtain an application’s version
number. However, the android:versionCode attribute is used by Android Market to determine
whether a newer version of your application is available.

You can programmatically retrieve the value of the android:versionCode attribute by using the
getPackageInfo()nmthodfnnnthePackageManageerms,hkethﬁ:

import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;

Preparing for Publishing

465

import android.content.pm.PackageManager .NameNotFoundException;

private void checkVersion() {
PackageManager pm = getPackageManager () ;
try {
//---get the package info---
PackageInfo pi =
pm.getPackageInfo ("net.learn2develop.LBS", 0);
//---display the versioncode---
Toast.makeText (getBaseContext (),
"VersionCode: " +Integer.toString(pi.versionCode),
Toast .LENGTH_SHORT) .show () ;
} catch (NameNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

The android:versionName attribute contains versioning information that is visible to users. It
should contain values in the format <major>.<minor>.<point>. If your application undergoes a
major upgrade, you should increase the <major> by 1. For small incremental updates, you can
increase either the <minor> or <point> by 1. For example, a new application may have a version
name of “1.0.0.” For a small incremental update, you might change it to “1.1.0” or “1.0.1.” For the
next major update, you might change it to “2.0.0.”

If you are planning to publish your application on the Android Market (www.android.com/
market/), the AndroidManifest.xml file must have the following attributes:

> android:versionCode (within the <manifest> element)
> android:versionName (within the <manifest> element)
» android:icon (within the <application> element)

» android:label (within the <application> element)

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.LBS"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="14" />

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<application
android:icon="@drawable/ic_launcher"
android:label="Where Am I" >

The android:label attribute specifies the name of your application. This name is displayed in the
Settings = Apps section of your Android device. For the L.BS project, give the application the name
“Where Am I”:

466 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

<uses-library android:name="com.google.android.maps" />
<activity
android:label="@string/app_name"
android:name=".LBSActivity" >
<intent-filter >
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

In addition, if your application needs a minimum version of the Android OS to run, you can specify
it in the AndroidManifest.xml file using the <uses-sdk> element:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.LBS"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="13" />

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<application
android:icon="@drawable/ic_launcher"
android:label="Where Am I" >
<uses-library android:name="com.google.android.maps" />
<activity
android:label="@string/app_name"
android:name=".LBSActivity" >
<intent-filter >
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

In the preceding example, the application requires a minimum of SDK version 13, which is
Android 3.2.1. In general, you should set this version number to the lowest one that your application
can support. This ensures that a wider range of users will be able to run your application.

Digitally Signing Your Android Applications

All Android applications must be digitally signed before they are allowed to be deployed onto a
device (or emulator). Unlike some mobile platforms, you need not purchase digital certificates from

Preparing for Publishing |

467

a certificate authority (CA) to sign your applications. Instead, you can generate your own self-signed

certificate and use it to sign your Android applications.

When you use Eclipse to develop your Android application and then press F11 to deploy it to

an emulator, Eclipse automatically signs it for you. You can verify this by going to Windows =
Preferences in Eclipse, expanding the Android item, and selecting Build (see Figure 12-1). Eclipse
uses a default debug keystore (appropriately named “debug. keystore”) to sign your application.
A keystore is commonly known as a digital certificate.

ﬂ Preferences LM
type filter text Build - - -
b e | Build Settings:
a Android
Build Automatical\y refresh Resources and Assets folder on build
DDMS Force error when external jars contain native libraries
Editors Skip packaging and dexing until export or launch. (Speeds up automatic builds on file save)
Launch 3 Build output
LogCat @ Silent
Usage Stats ©® Normal
> Ant e
> Data Management = Eidalias
p (Help Default debug keystore: C\Users\Wei-Meng Lee\.android\debug.keystore
» Install/Update
s Jlava Custom debug keystore:
i Java EE
> Java Persistence
> JavaSeript [Re;tore Default;] [Apply]
b Mylyn |
@ [0K I [Cancel I
L
FIGURE 12-1

If you are publishing an Android application, you must sign it with your own certificate.
Applications signed with the debug certificate cannot be published. Although you can manually
generate your own certificates using the keytool.exe utility provided by the Java SDK, Eclipse
makes it easy for you by including a wizard that walks you through the steps to generate a
certificate. It will also sign your application with the generated certificate (which you can sign
manually using the jarsigner.exe tool from the Java SDK).

The following Try It Out demonstrates how to use Eclipse to export an Android application and
sign it with a newly generated certificate.

Exporting and Signing an Android Application

For this Try It Out, you will use the 1.BS project created in Chapter 9.

1.
2.

3.

Select the 1.Bs project in Eclipse and then select File & Export. . . .

In the Export dialog, expand the Android item and select Export Android Application (see
Figure 12-2). Click Next.

The 1.Bs project should now be displayed (see Figure 12-3). Click Next.

468 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

(8 Boon By =)
Select F

Select an export destination:

type filter text

> @ General
4 (= Android
Mil:Export Andpid Application)
> & EJB
> (= Install
b = Java
> (= Java EE
> = Plug-in Development
» (= Remote Systems
> = Run/Debug
b (= Tasks
> £ Team
> & Web =
> (& Web Services
o WM

>

m

@ e | s

FIGURE 12-2

4. Select the “Create new keystore” option to
create a new certificate (keystore) for signing
your application (see Figure 12-4). Enter
a path to save your new keystore and then
enter a password to protect the keystore. For
this example, enter keystorepassword as the
password. Click Next.

5. Provide an alias for the private key (name it
DistributionKeyStoreAlias; see Figure 12-5)
and enter a password to protect the private
key. For this example, enter keypassword as
the password. You also need to enter a validity
period for the key. According to Google, your
application must be signed with a cryptographic
private key whose validity period ends after
22 October 2033. Hence, enter a number that
is greater than 2033 minus the current year.
Finally, enter your name in the field labeled First
and Last Name. Click Next.

-

@ Export Android Application

B
Project Checks r h
Performs a set of checks to make sure the application can be exported.,
Select the project to export:
Project: LBS
No errors found. Click Next.
®
.
FIGURE 12-3
r A
18] Export Android Application [y
Keystore selection @
() Use existing keystore
(@) Create new keystore
Location: C:\Users\Wei-Meng Lee\Desktop\MyNewCert keystore
Password: sesssssssssssssss
Confirm: sesssseessseensse
®

FIGURE 12-4

6. Enter a path to store the destination APK file (see Figure 12-6). Click Finish. The APK file will

now be generated.

Preparing for Publishing | 469

8} Export Android Application [18} Export Android Application
Key Creation ﬁ Destination and key/certificate checks
]
Alias: DistributionKeyStoreAlias Destination APK file: C:\Users\Wei-Meng Lee\Desktop\LBS.apk
Password: LITTIY
Certificate expires in 30 years.
Confirm:
Validity (years): 30

First and Last Name: Wei-Meng Lee
Organizaticnal Unit:

Organization:

City or Locality:

State or Province:

Country Code (X):

[<Back Finis Cancel

FIGURE 12-5 FIGURE 12-6

| <Back Mext » | concel

7. Recall from Chapter 9 that the LBS application requires the use of the Google Maps API key,
which you applied by using your debug.keystore’s MDS fingerprint. This means that the Google
Maps API key is essentially tied to the debug.keystore used to sign your application. Because
you are now generating your new keystore to sign your application for deployment, you need to
apply for the Google Maps API key again, using the new keystore’s MDS5 fingerprint. To do so,
go to the command prompt and enter the following command (the location of your keytool.exe
utility might differ slightly; see Figure 12-7):

C:\Program Files\Java\jre6\bin>keytool.exe -list -v -alias DistributionKeyStoreAlias
-keystore "C:\Users\Wei-Meng Lee\Desktop\MyNewCert.keystore"
-storepass keystorepassword -keypass keypassword -v

-
BN C\Windows\system32\cmd.exe |ilﬁléj

C:~FProgram Files“Java‘jrebrbin>keytool.exe —list —alias DistributionKeyStoreAlia|
lz —keystore sxlUsersiHei—HMeng LeesDesktop~MyMeuCert._ keystore” —-storepass keysto
repassword —keypass keypassword —v
filias name: DistributionHKeyStoreAlias
(Creation dat Now 11
Entry type: PrivateKeyEntry
Certificate chain length:z 1
iCertificatell]:
CH

MD5: tBA: H C:86:DE:88:26:7E:AF:12

B sC7:BC:B5:A1:88:8B:0A:7B:AC:88:FD:BC:6A
Signature algorithm name: SHAi1withRSA
Uersion:z 3

IC:“Program Filesg“Java“jrebs\hin>

%

FIGURE 12-7

470

CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

8. Using the MD5 fingerprint obtained from the previous step, go to http: //code.google.com/
android/add-ons/google-apis/maps-api-signup.html and sign up for a new Maps API key.
9. Enter the new Maps API key in the main.xm1 file:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:orientation="vertical" >
<com.google.android.maps.MapView
android:id="@+id/mapView"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:enabled="true"
android:clickable="true"
android:apiKey="your_key_ here" />
</LinearLayout>
10. With the new Maps API key entered in the main.xm1 file, you now need to export the application
once more and resign it. Repeat steps 2 through 4. When you are asked to select a keystore, select
the “Use existing keystore” option (see Figure 12-8) and enter the password you used earlier to
protect your keystore (in this case, keystorepassword). Click Next.
11. Select the “Use existing key” option (see Figure 12-9) and enter the password you set earlier to
secure the private key (enter keypassword). Click Next.
'@ Export Android Application E@g‘ 'E Export Android Application o |E)
Keystore selection @ Key alias selection e
(@ Use existing keystare @ Use existing key
() Create new keystore Alias: distributionkeystorealias v]
Location: C:\Users\Wei-Meng Lee\Desktop\MyNewCertkeystore e T
Password: sesesssssssesess) Create new key
Confirm:
® @

FIGURE 12-8 FIGURE 12-9

Deploying APK Files | 471

12. Click Finish (see Figure 12-10) to generate the
APK file again.

That’s it! The APK is now generated and
contains the new Map API key that is tied to the new
keystore.

How It Works

Eclipse provides the Export Android
Application option, which helps you to both
export your Android application as an APK

file and generate a new keystore to sign the
APK file. For applications that use the Maps
API key, note that the Maps API key must be
associated with the new keystore that you use to
sign your APK file.

8} Export Android Application =)
Destination and key/certificate checks \
i, Destination file already exists.

Destination APK file: C:\Users\Wei-Meng Lee\Desktop\LBS.apk

Certificate expires on Wed Mov 20 19:33:35 SGT 2041.
* WARNING: destination file already exists

L

FIGURE 12-10

DEPLOYING APK FILES

After you have signed your APK files, you need a way to get them onto your users’ devices.
The following sections describe the various ways to deploy your APK files. Three methods are

covered:

» Deploying manually using the adb. exe tool

> Hosting the application on a web server

> Publishing through the Android Market

Besides these methods, you can install your applications on users’ devices using e-mail, an SD card,
and so on. As long as you can transfer the APK file onto the user’s device, the application can be

installed.

Using the adb.exe Tool

Once your Android application is signed, you can deploy it to emulators and devices using the
adb.exe (Android Debug Bridge) tool (located in the platform-tools folder of the Android SDK).

472 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

Using the command prompt in Windows, navigate to the <android_spk>\platform-tools folder.
To install the application to an emulator/device (assuming the emulator is currently up and running
or a device is currently connected), issue the following command:

adb install "C:\Users\Wei-Meng Lee\Desktop\LBS.apk"

EXPLORING THE ADB.EXE TOOL

The adb. exe tool is a very versatile tool that enables you to control Android
devices (and emulators) connected to your computer.

By default, when you use the adb command, it assumes that currently there is only
one connected device/emulator. If more than one device is connected, the adb
command returns an error message:

error: more than one device and emulator

You can view the devices currently connected to your computer by using the
devices option with adb, like this:

D:\Android 4.0\android-sdk-windows\platform-tools>adb devices
List of devices attached

HT07YPY09335 device

emulator-5554 device

emulator-5556 device

As the preceding example shows, this returns the list of devices currently attached.
To issue a command for a particular device, you need to indicate the device using
the -s option, like this:

adb -s emulator-5556 install LBS.apk

If you try to install an APK file onto a device that already has the APK file, it will
display the following error message:

Failure [INSTALL_FAILED_ALREADY EXISTS]

If the LBS application is still on your device or emulator from earlier, you can
delete it via Settings = Apps = LBS = Uninstall.

Sometimes the ADB will fail (when too many ADVs are opened at the same

time; you will notice that you can no longer deploy applications from Eclipse onto
your real devices or emulators). In this case, you need to kill the server and then
restart it:

adb kill-server
adb start-server

Deploying APK Files |

When you inspect the launcher on the Android
device/emulator, you will be able to see the 1.BS icon
(on the top of Figure 12-11). If you select Settings =
Apps on your Android device/emulator, you will
see the Where Am I application (on the bottom of
Figure 12-11).

Besides using the adb. exe tool to install applications, you can
also use it to remove an installed application. To do so, use the
uninstall option to remove an application from its installed

folder:
adb uninstall net.learn2develop.LBS

Another way to deploy an application is to use the DDMS

tool in Eclipse (see Figure 12-12). With an emulator (or device)
selected, use the File Explorer in DDMS to go to the /data/app
folder and use the “Push a file onto the device” button to copy
the APK file onto the device.

473

1 5554Android_4.0 WithMaps

= Apps

DOWNLOADED

W Zooe

ON SD CARD RUNNING

Example Wallpapers
20.00KB

Intents
20.00KB

Sample Soft Keyboard
36.00KB

32.00KB

Widget Preview
20.00KB

47MB used 17MB free

FIGURE 12-11

@} DDMS - LBS/res/layout/mainxml - Eclipse

= x|

File Edit Run MNavigate Search Project Refactor Window Help

] & 88 Bdd Q- o~
rhl v o v
Q Devices &% = a] % Threads Heap Allocation Tracker File Explorer &7

AT ST T LU TS SUCKE TCTTa e LI L= T et UK ITOWI T SUUrCe
at com.android.ddmlib.AdbHelper. executeRemoteCommand (AdbHelper. java:395)
at_com.andraid.ddmlih.Device.exacuteshellCommand(Device . iava:319)

I

Ef &' Java 35 Debug (5 DONS | 42 Java FE

| | | @ | @ 7 || Nome)| iDate T push 2 file onto the device
Name ~|| 4 & data 2011-11-11 02: W X
emulator-5554 Online > [anr 2011-11-20 01:58 drwsxrwar-x
system_process 87 L 4 [= app 2011-11-28 1207 drwrwcx
com.android.systemui | Q) ApiDemos.apk 2002332 2011-10-12 21:09
com.android.inputmethod.latin 154 < CubeliveWsllpapers.apk 19949 2011-1012 21:09
com.android.phone 167 @ GestureBuilder.apk 27670 2011-10-12 21:09
com.android.launcher 180 Q SoftKeyboard.apk 34341 2011-10-12 21:09
com.geogle.process.gapps 207 @ Walgethyesiereapk 20151 2011-10-12 21:09
com.android.settings 229 > & app-private 2011-11-11 02:06
android.process.acore 250 & backup 2011-11-28 12:01
com.android.calendar 4 4 s 2011-11-28 12:05
com.android.deskelock 319 - > @ data 2011-11-28 12:05
1] ' > (= dontpanic 2011-11-11 02:06
(= drm 2011-11-11 02:06
@ Emulator Control 23 =0 S Il e s
Telephony Status - . (= lost=found 0114111 0206
Vinice: === Tl |FT - bl L LI} r
B0 LogCat | Bl Console 52 Bt B~ri-=0O
DDMS

FIGURE 12-12

474 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

Using a Web Server

If you wish to host your application on your own, you can use a web server to do that. This is
ideal if you have your own web hosting services and want to provide the application free of charge
to your users (or you can restrict access to certain groups of people).

NOTE Even if you restrict your application to a certain group of people, there
is nothing to stop users from redistributing your application to other users after
they have downloaded your APK file.

To demonstrate this, I use the Internet Information Server (IIS) on my Windows 7 computer. Copy
the signed LBS. apk file to c: \ inetpub\wwwroot\. In addition, create a new HTML file named
index.html with the following content:

<html>

<title>Where Am I application</title>

<body>

Download the Where Am I application here
</body>

</html>

NOTE |If you are unsure how to set up IIS on your Windows 7 computer, check
out the following link: http://technet .microsoft.com/en-us/library/
cc725762 .aspx.

On your web server, you may need to register a new MIME type for the APK file. The MIME type
for the .apk extension is application/vnd.android.package-archive.

NOTE |If you are unsure how to set up the MIME type on IS, check out the
following link:

http://technet.microsoft.com/en-us/library/cc725608 (WS.10) .aspx.

NOTE To install APK files over the Web, you need an SD card installed on your
emulator or device. This is because the downloaded APK files are saved to the
download folder created on the SD card. For testing this using the emulator,
ensure that your SD card has at least a size of 128MB. There are reports of
developers having problems installing their apps with an SD card size smaller
than 128MB.

Deploying APK Files | 475

By default, for online installation of Android applications, the Android emulator or device only
allows applications to be installed from the Android Market (www.android.com/market). Hence,
for installation over a web server, you need to configure your Android emulator/device to accept
applications from non-Market sources.

In the Settings application, click the Security item and scroll to the bottom of the screen. Check the
“Unknown sources” item (see Figure 12-13). You will be prompted with a warning message. Click
OK. Checking this item will allow the emulator/device to install applications from other non-Market
sources (such as from a web server).

To install the LBS . apk application from the IIS web server running on your computer, launch the
Browser application on the Android emulator/device and navigate to the URL pointing to the APK
file. To refer to the computer running the emulator, you should use the computer’s IP address.
Figure 12-14 shows the index.html file loaded on the web browser. Clicking the “here” link will
download the APK file onto your device. Click the status bar at the top of the screen to reveal the
download’s status.

1 5554:Android 40 WithMaps 7 5554:Android 4.0 WithMaps

a1

[% security B 192168.1.142/index.html =

Download the Where Am | application

Make passwords visible 7
here

DEVICE ADMINISTRATION

Device administrators
View or deactivate device administrators

Unknown sources

Allow installation of non-Market
apps

v

CREDENTIAL STORAGE

Trusted credentials
Display trusted CA certificates

Install from SD card
Install certificates from SD card

FIGURE 12-13 FIGURE 12-14

To install the downloaded application, simply tap on it. It will show the permission(s) required by
the application. Click the Install button to proceed with the installation. When the application is
installed, you can launch it by clicking the Open button.

Besides using a web server, you can also e-mail your application to users as an attachment; when the
users receive the e-mail, they can download the attachment and install the application directly onto
their device.

476 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

Publishing on the Android Market

So far, you have learned how to package your Android application and distribute it in various
ways — via web server, the adb. exe file, e-mail, and SD card.

However, these methods do not provide a way for users to discover your applications easily. A better
way is to host your application on the Android Market, a Google-hosted service that makes it very
easy for users to discover and download (i.e., purchase) applications for their Android devices. Users
simply need to launch the Market application on their Android device in order to discover a wide
range of applications that they can install on their devices.

In this section, you will learn how to publish your Android application on the Android Market.
You will walk through each of the steps involved, including the various items you need in order to
prepare your application for submission to the Android Market.

Creating a Developer Profile

The first step toward publishing on the Android Market is to create a developer profile at http://
market .android.com/publish/Home. For this, you need a Google account (such as your Gmail
account). Once you have logged in to the Android Market, you first create your developer profile
(see Figure 12-15). Click Continue after entering the required information.

I [
Developer Signup N
€ > C |® marketandroid.com/publish/signup Edit

ans>201d
3 y

—~

Before you can publish software on the Android Market. you must do three things

« Create a developer profile
« Pay a registration fee (525.00) with your credit card (using Google Checkout)
« Agree to the Android Market Developer Distribution Agreement

Your developer profile will determine how you appear to customers in the Android Market

Developer Name Developer Learning Solutic

Will appear to users under the name of your application

]

Email Address

Website URL http:/fwww.learn2develop.i

Phone Number
Include plus sign, country code and area code. For example, +1-650-253-0000. why do we ask for this?

Email Updates Contact me occasionally about development and Market opportunities.

Continue »

© 2010 Google - Android Market Developer Distribution Agreement - Google Terms of Service - Privacy Polic

.

FIGURE 12-15

Deploying APK Files | 477

For publishing on the Android Market, you need to pay a one-time registration fee, currently U.S.
$25. Click the Google Checkout button to be redirected to a page where you can pay the registration
fee. After paying, click the Continue link.

Next, you need to agree to the Android Market Developer Distribution Agreement. Check the “I
agree” checkbox and then click the “I agree. Continue” link.

Submitting Your Apps

After you have set up your profile, you are ready to submit your application to the Android Market.
If you intend to charge for your application, click the Setup Merchant Account link located at the
bottom of the screen. Here you enter additional information such as bank account and tax ID.

For free applications, click the Upload Application link, shown in Figure 12-16.

P (= s
Developer Console A
< C' | @ marketandroid.com/publish/Home ¥ A

an>201D
ﬁl

"\

Your Registration to the Android Market is approved!
You can now upload and publish software to the Android Market.

Developer Learning Solutions
weimengles@gmail com
Edit profile »

m

Mo applications uploaded

Upload Application

As a registered developer, you can purchase an unlocked
phone
Buy now »

Google checkout = B

Want to sell applications in the Android Market?

Set up a Merchant account with Google Checkout! You will
need to enter additional information like your bank account
information and Tax ID

Setup Merchant Account »

FIGURE 12-16

You will be asked to supply some information about your application. Figure 12-17 shows the first
set of details you need to provide. Among the information needed, the following are compulsory:

» The application must be in APK format

478 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

> You need to provide at least two screenshots. You can use the DDMS perspective in Eclipse
to capture screenshots of your application running on the emulator or real device.

> You need to provide a high-resolution application icon. This size of this image must be
512 X 512 pixels.

The other information details are optional, and you can always supply them later.

%\ Developer Console =

= C | @ marketandroid.com/publish/Home#EDIT_APPLICATION

Andraid_com

an>x012
fa
s - Y

Y

——,’

m

Your Registration to the Android Market is approved!
You can now upload and publish software to the Android Market.

Upload an Application

Draft application .apk file Upload an _apk file:

click the "publish’ button Choose File | No file chosen Upload

to publish draft apk file

Screenshots Add a screenshot: Screenshots:
at least 2 Choose File | o file chosen Upload 320w x 480h, 480w x 800h,

or 480w x 854h

24 bit PNG or JPEG (no alpha)
Full bleed, no border in art
Landscape thumbnails are cropped

High Resolution Application Add a hi-res application icon: High Resolution Application Icon:
lcon [Choose File Upload | 5712w x 5120
{Leam More] [Ghoose Fie | o i chosen 24 bit PNG or JPEG (no alpha)

Maximum: 1024 KB

Promotional Graphic ~ Add a promotional graphic: Promo Graphic:
optional Choose File Upload | 180w x 120h
[Ghoose File | o e chosen 24 bit PNG or JPEG (no alpha)
Full bleed, no border in art
Feature Graphic ~ Add a feature graphic: Feature Graphic:
optional Choose File Upload | 1024w x 500h
[(Ghoose File | o e chosen 24 bit PNG or JPEG (no alpha)
Will be downsized to mini or micro
Promotional Video Add a promotional video link: Promotional Video:
optional http:// Enter YouTube URL

Marketing Opt-Out Do not promote my application except in Android Market and in any Google-owned online or mobile
properties. | understand that any changes to this preference may take sixty days to take effect

L

FIGURE 12-17

Figure 12-18 shows the LBS. apk file uploaded to the Android Market site. In particular, note that
based on the APK file that you have uploaded, users are warned about any specific permissions
required, and your application’s features are used to filter search results. For example, because my
application requires GPS access, it will not appear in the search result list if a user searches for
my application on a device that does not have a GPS receiver.

Deploying APK Files

479

s

=
/15 Developer Console

Upload assets

Draft application .apk file
click the "publish’ button
to publish draft apk file

« \ 2 Graphic Assets for your A... * | [} Welcome to Develaper L. » |\ &

- C' | ® market.android.com/publish/Home#EDIT_APPLICATION?pkg=netlearn2develop.LBS

net.learn2develop.LBS (IBK}&ﬂ Saved Draft

Where Am |
VersionName: 1.0
VersionCode: 1

Localized to: default

B This apk requests 3 permissions that users will be warned about
android_permission INTERNET
android_permission ACCESS_FINE_LOCATION
android_permission ACCESS_COARSE_LOCATION

B This apk requests 4 features that will be used for Android Market filtering
android.hardware.location.network
android.hardware.location
android_hardware_location gps
android hardware touchscreen

[remave]

n

FIGURE 12-18

The next set of information you need to supply, shown in Figure 12-19, includes the title of your
application, its description, as well as details about recent changes (useful for application updates). You

can also select the application type and the category in which it will appear in the Android Market.

-

€« c

Listing details

Language
add language

Title (en)

Description (en)

Recent Changes (en)
VersionName: 1.0

Learn More

Promo Text (en)

Application Type
Category

Price

/1 Developer Console x _ \

=

® marketandroid.com/publish/Home#EDIT_APPLICATION

| “English (en} |
Star sign () indicates the default language.

10 characters (30 max)

This application allows you to view visually where you are
located using the Google Maps on your Android device. You can
also know the address of a location on the map by simply
touching on it.

324 characters (4000 max)

This is the first version of this application.

46 characters (500 max)

0 characters (80 max)
[Applcations [+]
Lifestyle :

Free Wantto sell appications? Setup a Merchant Account at Google Checkout

m

FIGURE 12-19

480 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

In the last dialog, you indicate whether your application employs copy protection, and specify a
content rating. You also supply your website URL and your contact information (see Figure 12-20).
When you have given your consent to the two guidelines and agreements, click Publish to publish
your application on the Android Market.

[= [B [
Developer Consele \ G
€« C | ® market.android.com/publish/Home#EDIT_APPLICATION brdie §

Copy Protection iff (Application can be copied from the device)
n (Helps prevent copying of this application from the device. Increases the amount of
memaory on the phone required to install the application)

The copy protection feature will be deprecated soon, please use licensing senice instead

Content Rating

Leamn More

All This rating option has been disabled by the Android Market team
Locations Select locations to list in:

[All locations

(Includes more countries than those listed below. As the developer, you are responsible for complying
with country-specific laws related to the distribution or sale of your application into that country,
including your home country.)

Website http:/fwww learn2develop.net
Email weimenglee@gmail.com
Phone

This application meets Android Content Guidelines

n

| acknowledge that my software application may be subject to United States export laws, regardless of my location or nationality. | agree that |
have complied with all such laws, including any requirements for software with encryption functions. | hereby certify that my application is authorized
for export from the United States under these laws. [Learn More]

Publish Save Delete

FIGURE 12-20

That’s it. Your application is now available on the Android Market. You will be able to monitor
any comments submitted about your application (see Figure 12-21), as well as bug reports and total
number of downloads.

Good luck! All you need to do now is wait for the good news; and hopefully you can laugh your
way to the bank soon!

Summary | 481

[o
Developer Console =
« C | @ marketandroid.com/publish/Home#LISTING_CONSOLE A §

an>xo1d
n y

fe—

Developer Learning Solutions
weimenglee@gmail.com
Edit profile »

= Where Am|v1.0 () kgakakakaid 0 total Free Errors Published
_ﬂ Applications: Lifestyle Comments 0 active installs (0%)

n Upload Application =

Development phones

As a registered developer, you can purchase an unlocked
phone.

Buy now »

Google checkout 2

Want to sell applications in the Android Market?

Set up a Merchant account with Google Checkout! You will
need to enter additional information like your bank account
information and Tax ID.

Setup Merchant Account »

© 2010 Google - Android Market Developer Distribution Agreement - Google Terms of Service - Privacy Policy

i]

FIGURE 12-21

SUMMARY

In this chapter, you have learned how you can export your Android application as an APK file

and then digitally sign it with a keystore you create yourself. You also learned about the various
ways you can distribute your application, and the advantages of each method. Finally, you walked
through the steps required to publish on the Android Market, which enables you to sell your
application and reach out to a wider audience. It is hoped that this exposure enables you to sell a lot
of copies and thereby make some decent money.

EXERCISES

1. How do you specify the minimum version of Android required by your application?
2. How do you generate a self-signed certificate for signing your Android application?
3. How do you configure your Android device to accept applications from non-Market sources?

Answers to the exercises can be found in Appendix C.

482 | CHAPTER12 PUBLISHING ANDROID APPLICATIONS

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Checklist for publishing
your apps

Signing applications

Exporting an application and
signing it

Deploying APK files

Publishing your application
on the Android Market

KEY CONCEPTS

To publish an application on the Android Market, an
application must have the following four attributes in the
AndroidManifest.xml file:

android:versionCode
android:versionName
android:icon
android:label

All applications to be distributed must be signed with a
self-signed certificate. The debug keystore is not valid for
distribution.

Use the Export feature of Eclipse to export the application as an
APK file and then sign it with a self-signed certificate.

You can deploy using various means, including web server,
e-mail, adb . exe, and DDMS.

To sell and host your apps on the Android Market, you can apply
with a one-time fee of U.S. $25.

