
Publishing Android Applications
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to prepare your application for deployment

 ➤ Exporting your application as an APK fi le and signing it with a new
certifi cate

 ➤ How to distribute your Android application

 ➤ Publishing your application on the Android Market

So far you have seen quite a lot of interesting things you can do with your Android device.
However, in order to get your application running on users’ devices, you need a way to deploy
it and distribute it. In this chapter, you will learn how to prepare your Android applications
for deployment and get them onto your customer’s devices. In addition, you will learn how
to publish your applications on the Android Market, where you can sell them and make
some money!

PREPARING FOR PUBLISHING
Google has made it relatively easy to publish your Android application so that it can be
quickly distributed to end users. The steps to publishing your Android application generally
involve the following:

 1. Export your application as an APK (Android Package) fi le.

 2. Generate your own self-signed certifi cate and digitally sign your application with it.

 3. Deploy the signed application.

 4. Use the Android Market for hosting and selling your application.

12

c12.indd 463c12.indd 463 25/01/12 9:32 AM25/01/12 9:32 AM

464 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

In the following sections, you will learn how to prepare your application for signing, and then learn
about the various ways to deploy your applications.

This chapter uses the LBS project created in Chapter 9 to demonstrate how to deploy an Android
application.

Versioning Your Application
Beginning with version 1.0 of the Android SDK, the AndroidManifest.xml fi le of every Android
application includes the android:versionCode and android:versionName attributes:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk android:minSdkVersion=”14” />
 <uses-permission android:name=”android.permission.INTERNET”/>
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>
 <uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

 <application
 android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name” >
 <uses-library android:name=”com.google.android.maps” />
 <activity
 android:label=”@string/app_name”
 android:name=”.LBSActivity” >
 <intent-filter >
 <action android:name=”android.intent.action.MAIN” />

 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

The android:versionCode attribute represents the version number of your application. For
every revision you make to the application, you should increment this value by 1 so that you can
programmatically differentiate the newest version from the previous one. This value is never used
by the Android system, but it is useful for developers as a means to obtain an application’s version
number. However, the android:versionCode attribute is used by Android Market to determine
whether a newer version of your application is available.

You can programmatically retrieve the value of the android:versionCode attribute by using the
getPackageInfo() method from the PackageManager class, like this:

import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;

c12.indd 464c12.indd 464 25/01/12 9:32 AM25/01/12 9:32 AM

Preparing for Publishing ❘ 465

import android.content.pm.PackageManager.NameNotFoundException;

 private void checkVersion() {
 PackageManager pm = getPackageManager();
 try {
 //---get the package info---
 PackageInfo pi =
 pm.getPackageInfo(“net.learn2develop.LBS”, 0);
 //---display the versioncode---
 Toast.makeText(getBaseContext(),
 “VersionCode: “ +Integer.toString(pi.versionCode),
 Toast.LENGTH_SHORT).show();
 } catch (NameNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

The android:versionName attribute contains versioning information that is visible to users. It
should contain values in the format <major>.<minor>.<point>. If your application undergoes a
major upgrade, you should increase the <major> by 1. For small incremental updates, you can
increase either the <minor> or <point> by 1. For example, a new application may have a version
name of “1.0.0.” For a small incremental update, you might change it to “1.1.0” or “1.0.1.” For the
next major update, you might change it to “2.0.0.”

If you are planning to publish your application on the Android Market (www.android.com/
market/), the AndroidManifest.xml fi le must have the following attributes:

 ➤ android:versionCode (within the <manifest> element)

 ➤ android:versionName (within the <manifest> element)

 ➤ android:icon (within the <application> element)

 ➤ android:label (within the <application> element)

The android:label attribute specifi es the name of your application. This name is displayed in the
Settings ➪ Apps section of your Android device. For the LBS project, give the application the name
“Where Am I”:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk android:minSdkVersion=”14” />
 <uses-permission android:name=”android.permission.INTERNET”/>
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>
 <uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

 <application
 android:icon=”@drawable/ic_launcher”
 android:label=”Where Am I” >

c12.indd 465c12.indd 465 25/01/12 9:32 AM25/01/12 9:32 AM

466 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

 <uses-library android:name=”com.google.android.maps” />
 <activity
 android:label=”@string/app_name”
 android:name=”.LBSActivity” >
 <intent-filter >
 <action android:name=”android.intent.action.MAIN” />

 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

In addition, if your application needs a minimum version of the Android OS to run, you can specify
it in the AndroidManifest.xml fi le using the <uses-sdk> element:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk android:minSdkVersion=”13” />
 <uses-permission android:name=”android.permission.INTERNET”/>
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>
 <uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

 <application
 android:icon=”@drawable/ic_launcher”
 android:label=”Where Am I” >
 <uses-library android:name=”com.google.android.maps” />
 <activity
 android:label=”@string/app_name”
 android:name=”.LBSActivity” >
 <intent-filter >
 <action android:name=”android.intent.action.MAIN” />

 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

In the preceding example, the application requires a minimum of SDK version 13, which is
Android 3.2.1. In general, you should set this version number to the lowest one that your application
can support. This ensures that a wider range of users will be able to run your application.

Digitally Signing Your Android Applications
All Android applications must be digitally signed before they are allowed to be deployed onto a
device (or emulator). Unlike some mobile platforms, you need not purchase digital certifi cates from

c12.indd 466c12.indd 466 25/01/12 9:32 AM25/01/12 9:32 AM

Preparing for Publishing ❘ 467

a certifi cate authority (CA) to sign your applications. Instead, you can generate your own self-signed
certifi cate and use it to sign your Android applications.

When you use Eclipse to develop your Android application and then press F11 to deploy it to
an emulator, Eclipse automatically signs it for you. You can verify this by going to Windows ➪
Preferences in Eclipse, expanding the Android item, and selecting Build (see Figure 12-1). Eclipse
uses a default debug keystore (appropriately named “debug.keystore”) to sign your application.
A keystore is commonly known as a digital certifi cate.

FIGURE 12-1

If you are publishing an Android application, you must sign it with your own certifi cate.
Applications signed with the debug certifi cate cannot be published. Although you can manually
generate your own certifi cates using the keytool.exe utility provided by the Java SDK, Eclipse
makes it easy for you by including a wizard that walks you through the steps to generate a
certifi cate. It will also sign your application with the generated certifi cate (which you can sign
manually using the jarsigner.exe tool from the Java SDK).

The following Try It Out demonstrates how to use Eclipse to export an Android application and
sign it with a newly generated certifi cate.

TRY IT OUT Exporting and Signing an Android Application

For this Try It Out, you will use the LBS project created in Chapter 9.

 1. Select the LBS project in Eclipse and then select File ➪ Export. . . .

 2. In the Export dialog, expand the Android item and select Export Android Application (see
Figure 12-2). Click Next.

 3. The LBS project should now be displayed (see Figure 12-3). Click Next.

c12.indd 467c12.indd 467 25/01/12 9:32 AM25/01/12 9:32 AM

468 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

 4. Select the “Create new keystore” option to
create a new certifi cate (keystore) for signing
your application (see Figure 12-4). Enter
a path to save your new keystore and then
enter a password to protect the keystore. For
this example, enter keystorepassword as the
password. Click Next.

 5. Provide an alias for the private key (name it
DistributionKeyStoreAlias; see Figure 12-5)
and enter a password to protect the private
key. For this example, enter keypassword as
the password. You also need to enter a validity
period for the key. According to Google, your
application must be signed with a cryptographic
private key whose validity period ends after
22 October 2033. Hence, enter a number that
is greater than 2033 minus the current year.
Finally, enter your name in the fi eld labeled First
and Last Name. Click Next.

 6. Enter a path to store the destination APK fi le (see Figure 12-6). Click Finish. The APK fi le will
now be generated.

FIGURE 12-2 FIGURE 12-3

FIGURE 12-4

c12.indd 468c12.indd 468 25/01/12 9:32 AM25/01/12 9:32 AM

Preparing for Publishing ❘ 469

 7. Recall from Chapter 9 that the LBS application requires the use of the Google Maps API key,
which you applied by using your debug.keystore’s MD5 fi ngerprint. This means that the Google
Maps API key is essentially tied to the debug.keystore used to sign your application. Because
you are now generating your new keystore to sign your application for deployment, you need to
apply for the Google Maps API key again, using the new keystore’s MD5 fi ngerprint. To do so,
go to the command prompt and enter the following command (the location of your keytool.exe
utility might differ slightly; see Figure 12-7):

C:\Program Files\Java\jre6\bin>keytool.exe -list -v -alias DistributionKeyStoreAlias
-keystore “C:\Users\Wei-Meng Lee\Desktop\MyNewCert.keystore”
-storepass keystorepassword -keypass keypassword -v

FIGURE 12-5 FIGURE 12-6

FIGURE 12-7

c12.indd 469c12.indd 469 25/01/12 9:32 AM25/01/12 9:32 AM

470 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

 8. Using the MD5 fi ngerprint obtained from the previous step, go to http://code.google.com/
android/add-ons/google-apis/maps-api-signup.html and sign up for a new Maps API key.

 9. Enter the new Maps API key in the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:orientation=”vertical” >

<com.google.android.maps.MapView
 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”your_key_here” />

</LinearLayout>

 10. With the new Maps API key entered in the main.xml fi le, you now need to export the application
once more and resign it. Repeat steps 2 through 4. When you are asked to select a keystore, select
the “Use existing keystore” option (see Figure 12-8) and enter the password you used earlier to
protect your keystore (in this case, keystorepassword). Click Next.

 11. Select the “Use existing key” option (see Figure 12-9) and enter the password you set earlier to
secure the private key (enter keypassword). Click Next.

FIGURE 12-8 FIGURE 12-9

c12.indd 470c12.indd 470 25/01/12 9:32 AM25/01/12 9:32 AM

Deploying APK Files ❘ 471

 12. Click Finish (see Figure 12-10) to generate the
APK fi le again.

That’s it! The APK is now generated and
contains the new Map API key that is tied to the new
keystore.

How It Works

Eclipse provides the Export Android
Application option, which helps you to both
export your Android application as an APK
fi le and generate a new keystore to sign the
APK fi le. For applications that use the Maps
API key, note that the Maps API key must be
associated with the new keystore that you use to
sign your APK fi le.

DEPLOYING APK FILES
After you have signed your APK fi les, you need a way to get them onto your users’ devices.
The following sections describe the various ways to deploy your APK fi les. Three methods are
covered:

 ➤ Deploying manually using the adb.exe tool

 ➤ Hosting the application on a web server

 ➤ Publishing through the Android Market

Besides these methods, you can install your applications on users’ devices using e-mail, an SD card,
and so on. As long as you can transfer the APK fi le onto the user’s device, the application can be
installed.

Using the adb.exe Tool
Once your Android application is signed, you can deploy it to emulators and devices using the
adb.exe (Android Debug Bridge) tool (located in the platform-tools folder of the Android SDK).

FIGURE 12-10

c12.indd 471c12.indd 471 25/01/12 9:32 AM25/01/12 9:32 AM

472 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

EXPLORING THE ADB.EXE TOOL

The adb.exe tool is a very versatile tool that enables you to control Android
devices (and emulators) connected to your computer.

By default, when you use the adb command, it assumes that currently there is only
one connected device/emulator. If more than one device is connected, the adb
command returns an error message:

error: more than one device and emulator

You can view the devices currently connected to your computer by using the
devices option with adb, like this:

D:\Android 4.0\android-sdk-windows\platform-tools>adb devices
List of devices attached
HT07YPY09335 device
emulator-5554 device
emulator-5556 device

As the preceding example shows, this returns the list of devices currently attached.
To issue a command for a particular device, you need to indicate the device using
the -s option, like this:

adb –s emulator-5556 install LBS.apk

If you try to install an APK fi le onto a device that already has the APK fi le, it will
display the following error message:

Failure [INSTALL_FAILED_ALREADY_EXISTS]

If the LBS application is still on your device or emulator from earlier, you can
delete it via Settings ➪ Apps ➪ LBS ➪ Uninstall.

Sometimes the ADB will fail (when too many ADVs are opened at the same
time; you will notice that you can no longer deploy applications from Eclipse onto
your real devices or emulators). In this case, you need to kill the server and then
restart it:

adb kill-server
adb start-server

Using the command prompt in Windows, navigate to the <Android_SDK>\platform-tools folder.
To install the application to an emulator/device (assuming the emulator is currently up and running
or a device is currently connected), issue the following command:

adb install “C:\Users\Wei-Meng Lee\Desktop\LBS.apk”

c12.indd 472c12.indd 472 25/01/12 9:32 AM25/01/12 9:32 AM

Deploying APK Files ❘ 473

When you inspect the launcher on the Android
device/emulator, you will be able to see the LBS icon
(on the top of Figure 12-11). If you select Settings ➪
Apps on your Android device/emulator, you will
see the Where Am I application (on the bottom of
Figure 12-11).

Besides using the adb.exe tool to install applications, you can
also use it to remove an installed application. To do so, use the
uninstall option to remove an application from its installed
folder:

adb uninstall net.learn2develop.LBS

Another way to deploy an application is to use the DDMS
tool in Eclipse (see Figure 12-12). With an emulator (or device)
selected, use the File Explorer in DDMS to go to the /data/app
folder and use the “Push a fi le onto the device” button to copy
the APK fi le onto the device.

FIGURE 12-11

FIGURE 12-12

c12.indd 473c12.indd 473 25/01/12 9:32 AM25/01/12 9:32 AM

474 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

Using a Web Server
If you wish to host your application on your own, you can use a web server to do that. This is
ideal if you have your own web hosting services and want to provide the application free of charge
to your users (or you can restrict access to certain groups of people).

NOTE Even if you restrict your application to a certain group of people, there
is nothing to stop users from redistributing your application to other users after
they have downloaded your APK fi le.

NOTE If you are unsure how to set up IIS on your Windows 7 computer, check
out the following link: http://technet.microsoft.com/en-us/library/
cc725762.aspx.

NOTE If you are unsure how to set up the MIME type on IIS, check out the
following link:

http://technet.microsoft.com/en-us/library/cc725608(WS.10).aspx.

NOTE To install APK fi les over the Web, you need an SD card installed on your
emulator or device. This is because the downloaded APK fi les are saved to the
download folder created on the SD card. For testing this using the emulator,
ensure that your SD card has at least a size of 128MB. There are reports of
developers having problems installing their apps with an SD card size smaller
than 128MB.

To demonstrate this, I use the Internet Information Server (IIS) on my Windows 7 computer. Copy
the signed LBS.apk fi le to c:\inetpub\wwwroot\. In addition, create a new HTML fi le named
index.html with the following content:

<html>
<title>Where Am I application</title>
<body>
Download the Where Am I application here
</body>
</html>

On your web server, you may need to register a new MIME type for the APK fi le. The MIME type
for the .apk extension is application/vnd.android.package-archive.

c12.indd 474c12.indd 474 25/01/12 9:32 AM25/01/12 9:32 AM

Deploying APK Files ❘ 475

By d efault, for online installation of Android applications, the Android emulator or device only
allows applications to be installed from the Android Market (www.android.com/market). Hence,
for installation over a web server, you need to confi gure your Android emulator/device to accept
applications from non-Market sources.

In the Settings application, click the Security item and scroll to the bottom of the screen. Check the
“Unknown sources” item (see Figure 12-13). You will be prompted with a warning message. Click
OK. Checking this item will allow the emulator/device to install applications from other non-Market
sources (such as from a web server).

To install the LBS.apk application from the IIS web server running on your computer, launch the
Browser application on the Android emulator/device and navigate to the URL pointing to the APK
fi le. To refer to the computer running the emulator, you should use the computer’s IP address.
Figure 12-14 shows the index.html fi le loaded on the web browser. Clicking the “here” link will
download the APK fi le onto your device. Click the status bar at the top of the screen to reveal the
download’s status.

FIGURE 12-13 FIGURE 12-14

To install the downloaded application, simply tap on it. It will show the permission(s) required by
the application. Click the Install button to proceed with the installation. When the application is
installed, you can launch it by clicking the Open button.

Besides using a web server, you can also e-mail your application to users as an attachment; when the
users receive the e-mail, they can download the attachment and install the application directly onto
their device.

c12.indd 475c12.indd 475 25/01/12 9:32 AM25/01/12 9:32 AM

476 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

Publishing on the Android Market
So far, you have learned how to package your Android application and distribute it in various
ways — via web server, the adb.exe fi le, e-mail, and SD card.

However, these methods do not provide a way for users to discover your applications easily. A better
way is to host your application on the Android Market, a Google-hosted service that makes it very
easy for users to discover and download (i.e., purchase) applications for their Android devices. Users
simply need to launch the Market application on their Android device in order to discover a wide
range of applications that they can install on their devices.

In this section, you will learn how to publish your Android application on the Android Market.
You will walk through each of the steps involved, including the various items you need in order to
prepare your application for submission to the Android Market.

Creating a Developer Profi le
The fi rst step toward publishing on the Android Market is to create a developer profi le at http://
market.android.com/publish/Home. For this, you need a Google account (such as your Gmail
account). Once you have logged in to the Android Market, you fi rst create your developer profi le
(see Figure 12-15). Click Continue after entering the required information.

FIGURE 12-15

c12.indd 476c12.indd 476 25/01/12 9:32 AM25/01/12 9:32 AM

Deploying APK Files ❘ 477

For publishing on the Android Market, you need to pay a one-time registration fee, currently U.S.
$25. Click the Google Checkout button to be redirected to a page where you can pay the registration
fee. After paying, click the Continue link.

Next, you need to agree to the Android Market Developer Distribution Agreement. Check the “I
agree” checkbox and then click the “I agree. Continue” link.

Submitting Your Apps
After you have set up your profi le, you are ready to submit your application to the Android Market.
If you intend to charge for your application, click the Setup Merchant Account link located at the
bottom of the screen. Here you enter additional information such as bank account and tax ID.

For free applications, click the Upload Application link, shown in Figure 12-16.

FIGURE 12-16

You will be asked to supply some information about your application. Figure 12-17 shows the fi rst
set of details you need to provide. Among the information needed, the following are compulsory:

 ➤ The application must be in APK format

c12.indd 477c12.indd 477 25/01/12 9:32 AM25/01/12 9:32 AM

478 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

 ➤ You need to provide at least two screenshots. You can use the DDMS perspective in Eclipse
to capture screenshots of your application running on the emulator or real device.

 ➤ You need to provide a high-resolution application icon. This size of this image must be
512 ! 512 pixels.

The other information details are optional, and you can always supply them later.

FIGURE 12-17

Figure 12-18 shows the LBS.apk fi le uploaded to the Android Market site. In particular, note that
based on the APK fi le that you have uploaded, users are warned about any specifi c permissions
required, and your application’s features are used to fi lter search results. For example, because my
application requires GPS access, it will not appear in the search result list if a user searches for
my application on a device that does not have a GPS receiver.

c12.indd 478c12.indd 478 25/01/12 9:32 AM25/01/12 9:32 AM

Deploying APK Files ❘ 479

The next set of information you need to supply, shown in Figure 12-19, includes the title of your
application, its description, as well as details about recent changes (useful for application updates). You
can also select the application type and the category in which it will appear in the Android Market.

FIGURE 12-18

FIGURE 12-19

c12.indd 479c12.indd 479 25/01/12 9:32 AM25/01/12 9:32 AM

480 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

In the last dialog, you indicate whether your application employs copy protection, and specify a
content rating. You also supply your website URL and your contact information (see Figure 12-20).
When you have given your consent to the two guidelines and agreements, click Publish to publish
your application on the Android Market.

FIGURE 12-20

That’s it. Your application is now available on the Android Market. You will be able to monitor
any comments submitted about your application (see Figure 12-21), as well as bug reports and total
number of downloads.

Good luck! All you need to do now is wait for the good news; and hopefully you can laugh your
way to the bank soon!

c12.indd 480c12.indd 480 25/01/12 9:32 AM25/01/12 9:32 AM

Summary ❘ 481

SUMMARY
In this chapter, you have learned how you can export your Android application as an APK fi le
and then digitally sign it with a keystore you create yourself. You also learned about the various
ways you can distribute your application, and the advantages of each method. Finally, you walked
through the steps required to publish on the Android Market, which enables you to sell your
application and reach out to a wider audience. It is hoped that this exposure enables you to sell a lot
of copies and thereby make some decent money.

EXERCISES

 1. How do you specify the minimum version of Android required by your application?

 2. How do you generate a self-signed certifi cate for signing your Android application?

 3. How do you confi gure your Android device to accept applications from non-Market sources?

Answers to the exercises can be found in Appendix C.

FIGURE 12-21

c12.indd 481c12.indd 481 25/01/12 9:32 AM25/01/12 9:32 AM

482 ❘ CHAPTER 12 PUBLISHING ANDROID APPLICATIONS

 ◃ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Checklist for publishing
your apps

To publish an application on the Android Market, an
application must have the following four attributes in the
AndroidManifest.xml fi le:

android:versionCode

android:versionName

android:icon

android:label

Signing applications All applications to be distributed must be signed with a
self-signed certifi cate. The debug keystore is not valid for
distribution.

Exporting an application and
signing it

Use the Export feature of Eclipse to export the application as an
APK fi le and then sign it with a self-signed certifi cate.

Deploying APK fi les You can deploy using various means, including web server,
e-mail, adb.exe, and DDMS.

Publishing your application
on the Android Market

To sell and host your apps on the Android Market, you can apply
with a one-time fee of U.S. $25.

c12.indd 482c12.indd 482 25/01/12 9:32 AM25/01/12 9:32 AM

